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1. Cooling Plant Optimization 

Cooling plants are comprised of three primary equipment types: chillers, cooling towers, and circulation pumps. 
Plants can range from a single chiller for a small building to over 20 chillers operating in concert for a large district 
cooling network. The vast majority of cooling plants are focused on ensuring operability with controls set to satisfy 
chilled water temperatures across the range of potential cooling loads encountered. This objective must remain the 
primary objective, however there are a multitude of dispatch configurations that can achieve this goal. But not all 
configurations will consume the same amount of electricity. The foundational premise for cooling plant 
optimization is the following: 

“For every operating condition there must exist a global optimum configuration that 
consumes the least electricity whilst still satisfying the current cooling load.” 

How to find this optimum configuration is the topic for a myriad of scientific theses, control system vendors, 
chiller manufacturers, plant operators, and mechanical engineers. The current philosophies circle around methods 
involving many catch phrases: Machine Learning, Cloud Computing, Big Data, Artificial Intelligence (AI). 
Somewhat lost in the cacophony is the tried and true approach of Model Predictive Control.  

Model Predictive Control (MPC) is often challenged by proponents of Machine Learning or Artificial Intelligence 
because a custom model must be created for each system encountered. As there are a plethora of chiller plant 
configurations and flow configurations, the difficulty to develop a model for each specific combination is daunting. 
In theory, the advantage of MPC is that an accurate model can predict the efficiency of the cooling plant under any 
conceivable operating condition and thus can inform the dispatch state to drive to the current global optimum. The 
accuracy of the model will determine how close to the true optimum the commanded dispatch will be. 

In contrast, Machine Learning and AI based algorithms continuously adjust the live system to “hunt and seek” for 
the optimum combination. There is an advantage to this method as it does not require knowledge of the entire 
system, it only needs to know if the latest change to the system was better performing than the last state. This 
allows these methods to constantly adjust for changes in equipment performance, configurations, and even the 
addition of new equipment. Model Predictive Control algorithm can also be adjusted or tuned using live 
performance data. An MPC algorithm based on manufacturer performance curves will match the equipment 
variations from manufacturing tolerances or after degradation. Thus the  MPC control will not be targeting the 
optimum state, but a “learning” algorithm may be able to seek it out. 

There is a downside to this continuous optimization with machine based and AI algorithms. These algorithms only 
operate the plant near the current state. This means that although they can seek for the local optimum point, they 
may not be near the global optimum and indeed may never learn where that configuration exists. Consider the two 
operational starting points below that lead only to the local maxima; from these starting points the machine 
learning will never find the true global maximum as they will get stuck on their local peaks. 

Even when the machine learning algorithm is close to the current global maximum, it is continuously seeking the 
next best operational state. Using numerical algorithms, the system continuously hunts for the new optimum 
condition. But the very act of hunting means it operates for some fraction of the time away from true optimum. 
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Model Predictive Control on the other hand drives directly to what it determines (based on a complete model of the 
system) is the true optimum condition. If the Model is tuned to the current cooling plant equipment performance 
curves, then the MPC control will achieve the true global optimum directly without any delay or continuous hunt 
and seek error. Historically the challenge was recalibrating the MPC model to align with the current performance 
drift of the operating equipment. 

The ideal solution would have the speed and accuracy of the MPC control with a periodic (not continuous) 
calibration of the model. This is the basis for the Eta-Cool algorithm. 

2. Model Predictive Control

Eta Cool is a Model Predictive Control algorithm created using a software tool called TRNSYS. TRNSYS is a 
transient thermal analysis tool that is the benchmark for virtually all other models. At its core it is a physics-based 
modeling and simulation tool with object-oriented programming that accommodates any combination of chillers, 
towers and pumps as well as the control strategies used to operate them. A challenge with implementing Model 
Predictive Control algorithms is that programming different configurations is time consuming and requires expert 
resources. 

These issues have been overcome with the creation of a generic system model that can rapidly model the majority 
of common cooling plant configuration. Eta Cool can model up to 10 unique chillers and 10 unique cooling towers. 
The two most common flow configurations are also addressed: primary/secondary and variable primary. 
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3. Data Acquisition

In order to function, all optimization solutions rely on data. The first step is to ensure that all relevant data points 
are measured and historized. For chillers, this condenses to just 4 key tuning parameters: 

• Condenser Average Fluid Temperature 

• Evaporator Average Fluid Temperature 

• Chiller Cooling Load 

• Chiller Power 

For Cooling Towers: 

• Fan Speed 

• Tower Inlet Water Temperature (Same as Condenser Outlet Temperature) 

• Tower Water Flow Rate 

• Ambient Wet Bulb Temperature 

• Ambient Dry Bulb Temperature 

• Fan Power 

For Pumps: 

• Differential Pressure (aka Head) 

• Pump Speed 

• Pump Power 

• Flow Rate 

With these measurements for the individual components of the cooling plant, the performance curve for every 
piece of equipment can be calibrated. This allows the next steps of the optimization process to proceed. 
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4. Baseline Performance:

Another key element of analysis is the determination of the baseline performance of the system. Surprisingly this 
may be distilled to a relatively small number of parameters in order to generate a function that will accurately 
reflect a cooling plant’s performance across the full range of operating conditions. The following 4 parameters can 
completely characterize any cooling plant: 

• Dry Bulb Temperature (C) 

• Wet Bulb Temperature (C) 

• Cooling Load (kWh) 

• Cooling Plant Energy (kWh) 

With these measurements over a sufficient period of time, any cooling plant’s performance can be accurately 
predicted. This is critical to the assessment of energy savings after retrofits and controls modifications have been 
implemented. 

The topic of characterization and baseline performance measurement is well understood. There is an international 
protocol developed to ensure accuracy for such measurements. The International Performance and Measurement 
Verification Protocol (IPMVP) has been developed and defines the methodologies, methods, and acceptable error 
margins for the determination of energy savings relative to a systems baseline performance. Under the IPMVP the 
Option B approach creates and energy boundary around a subsystem of a facility in order to generate a more 
accurate baseline. This allows a high accuracy when determining the savings on just the cooling plant which may 
have been obfuscated if measured at the main electricity meter. 
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Figure 1: Baseline Cooling Plant Performance

Applying industry standard best practices allows the determination of the baseline performance typically to within 
a 5% accuracy and a confidence interval greater than 90%.

5. Model Predictive Control

Initially, the generic model is configured using manufacturer supplied performance data for each component of the 
plant. Using this data, an optimal dispatch table is generated by pre-processing every possible plant condition. The 
operating range or envelope for equipment is constrained as per manufacturer’s specifications.  

Definition of Operational Envelope: 

“The maximum and/or minimum extents for operational parameters of a given piece of equipment 
beyond which the equipment may shutdown, be damaged, or otherwise become inoperable and require 
intervention to return to operable status.” 

For example, the minimum condenser temperature, minimum approach between condenser and evaporator 
temperature, and minimum load fraction are all programmed into the model to ensure that invalid operational states 
are excluded from the optimization.  

After sufficient data gathering from all components of the operational plant, the performance maps for individual 
chillers, towers, and pumps can be updated to reflect in situ performance differences from manufacturer 
characterizations.  

The primary advantage of this Model Predictive Control is the pre-processing of the optimal configuration for 
every possible state of operation. For a model with 5 chillers and 5 cooling towers, the Eta-Cool algorithm will pre-
process over 42 Million potential configurations. It then stores the optimal configuration for each load and ambient 
condition in the so called optimal dispatch table. This allows the control system to respond instantaneously to any 
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changes in the operating system and shift the control setpoints for each component instantly to the optimal values. 
The plant control systems will limit equipment cycling and ramp rates according to best practices and manufacturer 
specifications, but these are the only limits to the speed of response system to control to the global optimum. 

6. Calibration

Even new and clean performance curves for identical equipment can vary between 5 and 10 percent. After 
equipment is operated, there is a continuous performance drift away from starting efficiencies. There can also be 
sharp drops in performance resulting from defective equipment, partial equipment failures, and mal control or 
operational decisions. After sufficient data has been acquired regarding the performance for a given piece of 
equipment, the initial curves (typically supplied by the manufacturer) can be updated/adjusted to align with the 
newly acquired in situ performance. The differential between the previous model calibration and the newly 
recorded measured data can be utilized to generate actionable diagnostic alarms to trigger, predictive maintenance 
actions, control configuration changes, or even taking the equipment out of the current staging sequence. 

The frequency of calibration will impact the system efficiency as well as diagnostic alarm management. 
Continuous calibration would not be recommended as calibration data sets should be sufficiently large to provide 
an accurate adjustment to the performance curves. This will allow a subset of the measured operational envelope to 
be applied accurately to the complete envelope/performance table. As typical performance drift occurs over months 
of operation, under normal circumstances calibrating every 3 months should be sufficient. This also allows 
calibration to be subdivided into seasonal operating conditions which may provide a better calibration of the 
operational envelope. Although calibration should only be performed periodically, actionable alarms can be 
generated immediately if/when the performance of a given piece of equipment is outside of normal variation for 
the current calibrated performance. More than 5% deviation should trigger a warning alert and more than 10% 
should signal urgent operator intervention is required. 

The algorithm utilizes performance curves for each component of the cooling plant and preprocesses every 
possible load condition to determine the optimal dispatch and staging control. Modeling using a real world 
university campus indicates energy savings of up to 35% are achievable. Implementation of the performance 
monitoring also adds predicative maintenance functionality identifying underperforming equipment before a failure 
occurs.
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